
Establishing Qualitative Software Metrics
in Department of the Navy Programs

Chris Johnson
Ritesh Patel

Deyanira Radcliffe
Paul Lee

John Nguyen
SPAWAR System Center Pacific

San Diego, California USA

Abstract—Software Development is an infant

engineering discipline compared with other engineering
areas. The ability of programs, Program Managers, and
Lead Software Engineers to effectively measure how a
program is doing is increasingly difficult based on shifting
requirements, resource constraints, familiarity of the
development domain, etc.

The Department of the Navy is dedicated to provide the
highest quality software to its users. In doing, there is a need
for a formalized set of Software Quality Metrics. The goal of
this paper is to establish the validity of those necessary
Quality metrics. In our approach we collected the data of
over a dozen programs from previous tests, analyzed current
states of the software, derived formulas via weighting to
provide necessary results, investigated tool sets to provide the
necessary variable data for our formulas and tested the
formulas for validity. Keywords: metrics; software; quality

I. PURPOSE
Space and Naval Warfare Systems Center Pacific (SSC

Pacific) seeks to establish and provide a set of software quality
metrics, measured from common static code analysis tools
which the Department of the Navy can use to measure quality.
These metrics provide quality and maturity data through all
stages of software development to further ensure that the
software delivered meets government-specific requirements.
Carefully chosen metrics can direct attention to problems,
providing diagnostic value and influence developers’ behavior,
and offset post-delivery maintenance costs.

C. Johnson is with SPAWAR Systems Center Pacific, San Diego,

CA. 92152, USA; email: chris.e.johnson@navy.mil
R. Patel is with SPAWAR Systems Center Pacific, San Diego,

CA. 92152, USA; email: ritesh.patel@navy.mil
D. Radcliffe is with SPAWAR Systems Center Pacific, San

Diego, CA. 92152, USA; email: deyanira.radcliffe@navy.mil
P. Lee is with SPAWAR Systems Center Pacific, San Diego, CA.

92152, USA; email: paul.h.lee2@navy.mil
J. Nguyen is with SPAWAR Systems Center Pacific, San Diego,

CA. 92152, USA; email: jnguyen@spawar.navy.mil

II. SOFTWARE QUALITY CHARACTERISTICS

Software developers can use common static code analysis
tools to obtain various measurable metrics of various
categories from every software component. This document
identifies software qualities and their indicators that affect
DoD 5000.02 program areas, primarily cost, schedule, and
risk. For software quality measures the following abilities
associated with any software are considered.

• Reusability
• Portability
• Maintainability
• Security
• Extensibility
• Reliability
• Testability
• Scalability

III. SOFTWARE QUALITY TEST ASSERTIONS
The test looked at over forty software applications, from

over a dozen different developers, including government and
contractor. In order to achieve comparative measurements,
applications with less than four hundred thousand source lines
of code were selected. All the applications selected had
previously been tested, and in many cases operationally
fielded. From operational use, empirical data was available to
support a familiarity of the actual quality of the software prior
to the test. This data enabled us to refine the formulas through
test and analysis, formula refinement, and retest, to adjust the
formulas and weighting and provide us the expected results.

Next, we selected fifteen test tools to support various

measurements and program languages platforms. Once the
tools were determined, software applications were tested to
generate the necessary quality attribute data. The data
provided from the tools allowed for creation of the formulas
and weighting necessary, to achieve overall qualitative
measurement of software.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
29 OCT 2015

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Establishing Qualitative Software Metrics in Department of the Navy
Programs

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Chris E. Johnson Ritesh Patel Deyanira Radcliffe Paul Lee John Nguyen

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
SPAWAR Systems Center Pacific

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
AbstractâSoftware Development is an infant engineering discipline compared with other engineering areas.
The ability of programs, Program Managers, and Lead Software Engineers to effectively measure how a
program is doing is increasingly difficult based on shifting requirements, resource constraints, familiarity
of the development domain, etc. The Department of the Navy is dedicated to provide the highest quality
software to its users. In doing, there is a need for a formalized set of Software Quality Metrics. The goal of
this paper is to establish the validity of those necessary Quality metrics. In our approach we collected the
data of over a dozen programs from previous tests, analyzed current states of the software, derived
formulas via weighting to provide necessary results, investigated tool sets to provide the necessary variable
data for our formulas and tested the formulas for validity.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

12

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

IV. SOFTWARE QUALITY MEASURMENT
Table I defines a matrix for determining a score for

reusability. It is as an example for the other abilities being
measured in this document. The columns in the tables
represent the software attributes our research proved to be the
most relevant to determine quality for software we acquire.
The rows in the table define a range of values to score the
software. The project team selected these attributes based on
various documents, studies, academic research, industry
findings, and empirical data of locally developed programs as
listed in References [1-33].

To achieve the overall score of a particular ability, we

selected the combined measures from the table. The
corresponding grade 1-5 was selected for each attribute. The
grade number for each attribute is then multiplied by the
corresponding weighting in the formula. The numbers for each
attribute were then added to arrive at a final score. That score,
using the same overall grade as the individual attributes, was
used to determine the overall quality.

A. Reusability
Software abstractness drives reusability. Abstract software

can be inherited, which allows for increased reuse. In addition
to abstract software modularity improves software reuse since
smaller more abstract components can be reused and put
together like LEGO® blocks to create new functionality.

Reusability must consider input and output parameters in

order to be successfully implemented. Not only must
reusability metric involve a wide variety of input parameters,
it must define the interrelationships among the parameters and
their relative importance [1]. The formula provides heavier
weighting on abstractness (0.5) over the other contributing
variables in the formula. Based on our research abstract
software is composed of modular components that are more
general making adoption by other classes easier. Our formula
utilized the Chidamber and Kemerer OO Metrics in addition
to elements as defined in Ref [2]. Using the same set of core
metrics [2], modularity provides the next higher weighting,
(0.3) which accounts for the sizes of the modules and actual
number of modules being used for the application. For this
measure, smaller module sizes with more modules are
preferred, and provide the associated formula weighting.
Studies indicate that complex modules cost the most to
develop and have the highest rates of failure [1]. Complexity
and architecture provide the final attribute measures, and are
weighted identical based on once module sizes are reduced,
best engineering process would dictate decreasing the
complexity of the modules and thus help in achieving the
modularity values desired.
Related Metrics:

• Modularity

o Number of module score
o Module size score

• Abstractness

o Weighted Methods per Class (WMC)
o Number of Children per Class (NOC)

• Complexity

o Cyclomatic Complexity
o Coupling

• Open Architecture Assessment

o Use open architecture = 1 if not 0

TABLE I. REUSABILITY SCORE MATRIX

Calculations:

Modularity Calculation:
 Mo = (Mn x .5) + (Ms x .5)

Abstractness Calculation:
 Ab = (W x 0.5) + (N x 0.5)

Complexity Calculation:
 Co = (Vg x 0.5) + (Cp x 0.5)

Reusability Calculation
 Re = Mo(0.3) + Ab(0.5) + Co(0.1) + Oa(0.1)

Re = Reusability
Mo = Modularity
Mn = Number of Modules
Ms = Module Size
Ab = Abstractness
Co = Complexity
Vg = Cyclomatic Complexity
Cp = Coupling
Oa = Open Architecture Assessment
W = Weighted Methods per Class
N = Number of Children

B. Portability
Software portability entails the ability and effort required to
produce a runnable application based on existing source code
for a new environment. Portability is the ability to move
software among different runtime platforms without having to
rewrite it partly or fully [3]. Software portability depends on
the language used, the libraries, the dependency on native

system calls, and the assumptions about the underlying
hardware, including display, storage space, memory
availability and permissions. Measuring portability is not a
simple task. Product metrics may measure size,
performance, complexity (density of branches, variables, etc.,
procedure or module dependencies), or occasionally more
abstruse attributes like reliability or maintainability [4]. The
portability metric is useful, but it is critical to first review the
software architecture to determine the availability of
dependent libraries as well as hardware assumptions. For
portability there are two important factors to consider prior to
determine the degree of portability. First, does the cost of
porting provide the necessary incentive to port versus conduct
new development. And secondly, does the software to be
ported align to the questions formed below in a pre-gate
evaluation of overall system portability. If it is determined that
portability is cost prohibitive or determined that the target
environment cannot support the software to be ported, then
calculating the degree of portability and determining a
portability score is unnecessary. The key features for software
portability are as derived from Ref. [4, 5]:

• Use of popular high-level language (not assembly
language, or platform-specific language)

• Keeping platform-specific code in modules separate
from the cross-platform code and building applications
on a platform-abstraction layer.

• Use of standardized and widely available APIs (e.g.,
OpenGL™, X) and cross-platform network APIs,
protocols, and data representations (e.g., XML, JSON
Studio™, CORBA); pay attention to byte-ordering,
structure-packing, and native character set issues.

• Use of cross-platform libraries and open source libraries
that have multiplatform support.

• Use of a cross-platform virtual machine or interpreter
(e.g., Java™, Smalltalk, Python™).

Related Metrics:

• Programming languages

o Software is not portable if it is written using
platform specific language or language that
is not supported on the targeted platform

o Java™, C, C++, Python™ = 2, other high level
language = 1

• Architecture assessment

o Interview the system architect or lead
programmer and check off the architecture
features for score

• Modularity

o Number of modules
o Module size score

• Complexity

o Cyclomatic complexity
o Coupling

TABLE II. PORTABILITY SCORE MATRIX

 A careful examination of all hardware dependencies is an
important first step as hardware dependencies present the
biggest challenge in portability. Whether it is a smart card, a
display device, a storage device, or some specialized hardware,
when support for the hardware does not exist on the targeted
platform, the project is considered not portable and the grade
for the portability category is Poor for all categories.

 Portability Pass/Fail questions:

• Is there any critical hardware dependency where
support does not exist on the targeted platform?

• Is there platform specific language in the software?

 After passing the portability questions, the architecture
score for portability can be determined by reviewing the
software architecture or interviewing the system designer. The
following questions should be answered:

• Does the project use a cross-platform virtual machine or
primarily use interpreted language (e.g., Java™,
Smalltalk, and Python™)?

[Yes = Very good portability, Grade = 1] (100% of
final grade)

• If a cross-platform virtual machine or interpreter is not
used. How well is the platform-specific code separated
from the cross-platform code?

[Estimate using the very good, good, fair, needs
improvement and poor grades.] (33% of final grade)

• Use standardized and widely available APIs (e.g.,
OpenGL™, X) and cross-platform network APIs,
protocols, and data representations (e.g., XML, JSON
Studio™, CORBA). Pay attention to byte-ordering,
structure-packing, and native character set issues.

Estimate using the very good, good, fair, needs
improvement and poor grades. (33% of final grade)

• Use cross-platform libraries and open source libraries
that have multiplatform support.

Yes = Very good portability, grade = 1

 No = Poor portability, Grade =5 (33% of final grade)

Programming languages score:

• Score assignment for Java™, C, C++, or Python™ is
“Very Good”. Use “Fair” for other high level language.

Calculations for portability are based on architecture
assessment, modularity, complexity and programming
languges. The weighting associated with these attributes
determined by our research and showed that modularity and
complexity were both weighted to account for 60% of
Portability score. These values are based on existing research
identifying more modular and less complex software as being
integral to portability[4]. In addition to modularity and
complexity our research indicated that we also need to factor
targeted architecture and types of programming languages that
make up the software system. These two items were weighted
equally to provide remaning 40% of the total portability score.

Calculations:

Modularity Calculation:
 Mo = (Mn x 0.5) + (Ms x 0.5)

Complexity Calculation:
 Co = (Vg x 0.5) + (Cp x 0.5)

Portability Calculation:
 P = Oa(0.2) + Mo(0.3) + Pl(0.2) + Co(0.3)

P = Portability
Oa = Open Architecture Assessment
Mo = Modularity
Mn = Number of Modules
Ms = Module Size
Cp = Coupling
Pl = Programming Languages
Co = Complexity
Vg = Cyclomatic Complexity

C. Maintainability
As technology, security risks, and hardware requirements

increase, software must evolve to continue to function
optimally. The need to maintain the software becomes a
critical expenditure to ensure regular updates and revisions
that correct any issues, improve efficiency and maintain
security.

The programmers’ opinion regarding the level of

maintainability usually varies. However, generally, according
to their opinion a program with a high level of maintainability
should consist of modules with strong cohesion and loose
coupling, readable, clear, simple, well–structured and
sufficiently commented code, having a strictly concurrent
style and well–conceived terminology of their variables.
Furthermore, the implemented routines should be of a
reasonable size (preferably fewer than 80 lines of code), with
limited fan–in and fan–out. Straightforward logic, natural

expressions and conventional language should be followed
[6,7].

 The overall objective of maintainability is to improve
some aspect of the software. Typical improvements are to
restructure the code to reduce its complexity, improve its
modularity (e.g., group the code implementing a feature into a
single module), reduce the coupling between modules,
minimize replicated code, and remove dead code. Other
maintainability improvements relate to discovering and
eliminating “anti-patterns” in the code, such as decision
statements in which some values are not covered by branches,
calls to external library functions which do not check the
return value, or use of unsafe functions such as the C strcat
routine [8].

Software maintainability is inversely proportional to both
the effort required to make a change and the risk of breaking
other functionality. The key targets in improving software
maintainability are:

• Improve source code readability with comments and

self-documented names
• Use a common programming language
• Keep software complexity low
• Loose coupling and high cohesion
• Isolate software functions using modularization

techniques

Related Metrics:

• Comment Percentage in Code
• Modularity
• Number of Modules Score
• Module size score
• Cyclomatic Complexity
• Duplicate / Dead Code
• Number of Instances

TABLE III. MAINTAINABILITY SCORE MATRIX

The Maintainability score indicates how easy or hard it
will be to upkeep the software. This score is determined
mostly on software complexity, which is measured by
identifying cyclomatic complexity [5]. Software with higher

complexity requires additional effort to upkeep or modify.
This complexity is based on two attributes: (1) more effort is
required to understand complex software and requires
additional documentation as well as additional expertise and
2) additional effort is required to test because there are more
independent paths require testing. Complex software is
typically more prone to inherent defects, and repairing these
defects can increase sustainment costs.

We assigned highest weighting of 50% to complexity since
more complex code drives up the cost for testing and
modifying the software [5]. Modularity provided additional
30% of the formula to account for code size and amount of
modules that need to be maintained. The remaining 20% of
the formula was equally distributed between programming
languages and dead/duplicate code. Too many programming
languages can increase upkeep cost. Duplicate and dead code
introduce security risk factors as well as add to maintenance
cost [5].

Calculation:

Modularity Calculation:
 Mo = (Mn x 0.5) + (Ms x 0.5)

Complexity Calculation:
 Co = (Vg x 0.5) + (Cp x 0.5)

Maintainability Calculation:

M = Co(0.5) + Mo(0.3) + Dp(0.1) + Pl(0.1)

M = Maintainability
Co = Complexity
Cp = Coupling
Vg = Cyclomatic Complexity
Pl = Programming Languages
Dp = Duplicate/Dead Code

D. Security
The Application Security and Development (ASD)

Security Technical Implementation Guide (STIG) provides the
baseline requirements for Government-Off-The-Shelf (GOTS)
applications and may be used to evaluate custom-developed
applications and Commercial-Off-The-Shelf (COTS)
software. Static analysis tool output, such as Common
Weakness Enumeration (CWE)/SANS Top 25 vulnerabilities
may also be used to measure software security.

 The Security Metric formula is based on multi-tier
weighting. We implemented the multi-tier weighting to
account for the disparate attributes associated with the security
formula as well as the differing severity vulnerability rating
scales provided by automated tool output. This formula
assigns the highest value to Category I (CAT I) findings,
followed by CATII and CATIII’s and other potential issues
within the system that may be elevated to CAT level in the
future.

 The project team defined the CAT formula to properly
weight the associated severity of each classification of defects
and assist in prioritizing vulnerabilities to be addressed. This
formula does not however represent the application’s overall
risk . Risk assessment methodology in accordance with DoDI
8510.01, Risk Management Framework (RMF) for DoD
Information Technology (IT), NIST SP 800-30, Guide for
Conducting Risk Assessments, and Navy guidance should be
used for risk management decisions.

 Systems developed for Department of Navy use are typically
are required to possess zero CATI findings in order to field.
CATII findings can be present, but only with proper
mitigation and a plan of action to mitigate or remediate those
items during a defined time. CATIII findings are low risk and
are allowed; however, every effort should be made to remedy
these	
 accordingly. Based on these criteria, each CAT finding
classification is weighted as listed in the formula with CATI
items weighted as (0.5) the total value, CATII weighted at
(0.3) the total value, and CATIII weighted at (0.2) the total
CAT value. Once the sum of these values is calculated, the
CAT attribute is weighted for	
 the Overall Security value.

	

 Since Defect Density represents risk for potential issues, it
makes up a significant attribute to define the overall security
posture of a software application, it is imperative that it be
given individual weighting and an attribute score in the
Overall Security value. For the purpose of the formula, Defect
Density was weighted at (0.25) of the Overall Security value.
This weight is due to the fact that increasingly large numbers
of software defects are found throughout the software we
tested. This weight showed that the Defect Density could be
considered very high. However, closer analysis revealed that
the vast majority, approximately 80% of those defects, are
trivial or minor in scope, and focused on coding style issues.
These defects are believed to not impact the ability of the
software to be secure and withstand cyber-related attack.
Based on the premise that a large number of defects can be
prevalent, it is not suggested that large numbers indicate
proportionately large numbers of critical defects, but suggests
the associated weighting of this attribute at the appropriate
0.25 score.

Related Metrics:

• Open Web Application Security Project (OWASP) Top
10 and CWE

TABLE IV. SECURITY SCORE MATRIX

Calculation:

Security Calculation:

S = (((CATI#s(.5) + CATII#s(.3) + CATIII#s(.2))* .75)
+ ((D / LOC) * .25)

S = Security
LoC = Lines of Code
D =# Defects
CAT I = Any vulnerability, the exploitation of which will
directly or immediately result in the loss of Confidentiality,
Availability, or Integrity
CAT II = Any vulnerability, the exploitation of which has
potential to result in loss of Confidentiality, Availability, or
Integrity.
CAT III = Any vulnerability, the existence of which
degrades measures to protect against loss of
Confidentiality, Availability, or Integrity.

E. Extensibility
Extensibility can be confused with re-usability. Software

extensibility describes how much effort is required to extend
and change the software to provide new functionality that may
not have been originally planned. Extensible design avoids
software development issues such as low cohesion and high
coupling.

 Extensibility measures how easy or hard it will be to add to
software’s capability. Extensibility is impacted by various
factors equally. These factors include software modularity,
coupling/cohesion, complexity, and open architecture.
Software that is modular can be easily extended because
less code requires modification. Therefore, based on these
values we equally weight the attributes for the Extensibility
formula.

Related Metrics:

• Modularity
• Number of Modules Score
• Module Size Score
• Weighted Method per Class (WMC)
• Coupling / Cohesion
• Complexity
• Cyclomatic Complexity
• Architecture

TABLE V. EXTENSIBILITY SCORE MATRIX

We assigned equal weights of 33% to modularity,
complexity and open architecture. We found each of these
attributes to be equally important in determining extensibility.
Our testing and empirical data showed that variation in
weights of three factors had adverse effect on overall system
extensibility [4,5].

Calculations:

Modularity Calculation:
 Mo = (Mn x .5) + (Ms x .5)

Complexity Calculation:
 Co = (Vg x .5) + (Cp x .5)

Extensibility Calculation:
 E = Mo(.34) + Co(.33) + Oa(.33)

E = Extensibility
Mo = Modularity
Mn = Number of Modules
Ms = Module Size
Cp = Coupling
Co = Complexity
Vg = Cyclomatic Complexity
Oa = Open Architecture Assessment

F. Reliability
 Software reliability is the measure of how well the
software will work when a particular functionality is required.
Issue density and software complexity are two key drivers
impacting this metric. Software with fewer issues is less likely
to breakdown when it executed. Software with lower
complexity is typically easier to fix and test, requires less
downtown time to fix any issues found, which improves
availability, and in turn, increases reliability.

 Our formula weighted the Software Issue Density and
Cyclomatic Complexity values identical. Both contribute
equally to the ability of a software application to maintain
reliable operational use. While Cyclomatic Complexity
produces the majority of the observed Software Issue Density
due to risks associated with complex software, it also adds
significant time in the repair of the associated defects
encountered [5, 9].

Related Metrics:

• Software Issue Density
• Cyclomatic Complexity

TABLE VI RELIABILITY SCORE MATRIX

Calculations:

Reliability Calculation:

R = Dd(0.5) + Vg(0.5)

R = Reliability
Dd = Defect Density
Vg = Cyclomatic Complexity

G. Testability
Testability is high when there is a high degree of

controllability that enables the injection of any input
combination and the invoking of any possible state or
combination of state. To uncover faults, the ability to observe
the state and behavior is another desirable characteristic.
Complexity, modularity and size are also important factors in
testability estimation.

Modular software was far easier to test because smaller,

less complex modules that require less test paths through the
source code to execute complete test coverage. We weighted
the formula based on this fact. For this formula, we weighted
Modularity (0.5), the established value of Testability.

A higher score in Testability also relies on a lower

Cyclomatic Complexity value (0.4). A lower Cyclomatic
Complexity score depicts less test paths necessary to exercise
fully all branches through the software, which supports full
test automation. This score is associated with the Modularity
weighting, in that smaller modules, by necessity, would lend
itself into having greater numbers, of less complex modules,
and would then reduce the weighted complexity value. In
addition, we determined the need to account for Dead/Unused
code. This value accounts for a small variable (0.1), in the
formula since higher complex modules were found to exhibit
smaller amount of Dead or Unused Code in the tested modules
or files being tested [4].

Related Metrics:

• Modularity
• Coupling/Cohesion
• WMC
• Number of Modules
• Module Size Score
• Cyclomatic Complexity
• Duplicate/Dead Code
• Number of Dead Code Instances

Calculation:
Modularity Calculation:
 Mo = (Mn x .5) + (Ms x .5)

Testability Calculation:

T = Mo(.5) + Vg(.4) + Dp(.1)

 T = Testability

Mo = Modularity

Mn = Number of Modules
Ms = Module Size
Vg = Cyclomatic Complexity

 Dp = Duplicate/Dead Code

H. Scalability
The term “scalability” can encompass a wide range of

meanings. For the purposes of this software quality model,
scalability refers to how well the software performs given
more users and data on a system representative of the
production environment. The intent is to measure how the
system adapts as the workload increases.

Without instrumenting the code or running performance
tests, a quick measure of the scalability of the system depends
on how well the software takes advantage of thread level and
data level parallelism in addition to use of modular design.
Software that exhibits more parallelism may have fewer
dependencies and less coupling. Open architectures such as
service oriented architectures (SOA) divide the system into
composable parts that can adapt to varying demands.

Scalability should only be measured dynamically by
monitoring resource utilization growth with increasing load.
Depending on the intended platform, analysis tools such as
Intel®, VTune™, Amplifier XE, HP® Loadrunner™, and
Apache JMeter™, can be used to dynamically assess the
software scalability.

I. Quality to Metrics Dependency Matrix

TABLE VII QUALITY TO METRICS DEPENDENCY MATRIX

V. SOFTWARE METRICS DEFINITION

A. Modularity
Modularity is separation of a software system in

independent and collaborative modules that can be organized
in a software architecture [10] . Modular software has several
advantages such as maintainability, manageability, and
comprehensibility.

There are five attributes closely related to modularity in
software systems, size, coupling / dependency, complexity,
cohesion, and information hiding. The first attribute is the size

of the module as well as the system that contains each module.
It should not be too large in size. Additional features in the
system should be translated as the addition in the module of the
system. The second attribute is coupling / dependency which
consist of direct / syntactic which can be achieved through
composition, method signatures, class instantiations, and
inheritance; and semantic or indirect coupling. The third
attribute is complexity that can be measured by using software
metrics such as McCabe's Cyclomatic Complexity or
Halstead's Software Metrics. The fourth attribute is cohesion
which measures the integrity of the code inside each of the
module. The terms used to qualitatively measure cohesion are
high cohesion or low cohesion. The last attribute is information
hiding which involves hiding the details of implementation
from external modules. Relating to the modularity property of a
software system, in order to have an ideal modular software
system, the software system should have the following
attributes [11]:

• Small size in each module (package) and many modules
in the system. Each module / package should only be
responsible for a simple feature, and the more complex
features should be composed of many of these simple
features. The possible software metrics to measure size
are NCLOC, Lines, or Statements.

• Low coupling / dependency: minimization or
standardization of coupling / dependency e.g. through
standard format i.e. published APIs, elimination of
semantic dependencies, etc. The possible software
metrics to measure coupling are Afferent Coupling,
Efferent Coupling, or RFC (Response for a Class).

• Low complexity: hierarchy of modules that prefers
flatter than taller dependency. The most popular
software metrics to measure complexity is cyclomatic
complexity. [12]

• High cohesion: high integrity of the internal structure of
software modules which is usually stated as either high
cohesion or low cohesion. The better measure of
cohesion in object oriented programming such as Java™
is LCOM4 or Lack of Cohesion Metrics version 4
proposed by Hitz and Montazeri.

• Open for extension and close to modification: capability
of the existing module to be extended to create a more
complex module. And avoid changing already
debugged code. The creation of new modules should be
encouraged using available extension and not
modifying the already tested module. [11]

B. Dependencies
Almost all software systems have components that are

identifiable as data items, data types, subprograms, or source
files. There is a dependency between two components if a
change to one may have an impact that will require changes to
the other.

C. Cyclomatic Complexity
The cyclomatic complexity of a section of source code is the
number of linearly independent paths within it. For instance,

if the source code contains no control flow statements
(conditionals or decision points), such as IF statements, the
complexity is 1, since there is only a single path through the
code. If the code has one single-condition IF statement, there
are two paths through the code: one where the IF statement
evaluates to TRUE and another one where it evaluates to
FALSE, so complexity is 2 for single IF statement with single
condition. Two nested single-condition IFs, or one IF with two
conditions, produces a complexity of 4, 2 for each branch
within the outer conditional. Cyclomatic complexity was
developed by Thomas J. McCabe, Sr. in 1976. [12]

One of McCabe's original applications was to limit the
complexity of routines during program development; he
recommended that programmers should count the complexity
of the modules they are developing, and split them into
smaller modules whenever the cyclomatic complexity of the
module exceeds 10. This practice was adopted by the NIST
Structured Testing methodology, with an observation that
since McCabe's original publication, the figure of 10 has
received substantial corroborating evidence, but that in some
circumstances it may be appropriate to relax the restriction
and permit modules with a complexity as high as 15. As the
methodology acknowledged that there were occasional
reasons for going beyond the agreed-upon limit, it phrased its
recommendation as: "For each module, either limit cyclomatic
complexity to [the agreed-upon limit] or provide a written
explanation of why the limit was exceeded." [13]

D. Abstractness
Robert Martin proposed a widely used metric suite in

1994. Abstractness was included and is the ratio of the number
of abstract classes versus the total number of classes. A value
of 0 would mean no abstract classes were present and a max
value of 1 would mean that all of the classes are abstract. [14]

Abstractness is important in order to maintain stability
within the source code [15]. Abstractions allow the
implementation to change without modifying the interfaces, so
that dependent code does not break. Abstractions also may
indicate the use of design patterns.

E. Coupling
This metric shows how strong the dependency of the

source code is, i.e. the strength with which classes, methods,
methods’ parameters are connected to each other; the degree
to which each program module relies on each one of the
others.

Low (loose) coupling means that source code is organized

in such a way, so that its methods and classes slightly address
each other. That means that the source code is not written in
the optimally; rather independent methods and classes were
created to solve separate tasks.

F. Cohesion
This metric shows an average number of internal relationships
per type in a package/namespace.

G. Afferent Coupling
Afferent means incoming. - This metric is applied to

packages and namespaces. It is the number of types outside a
package or namespace that depend on types of the current
package or namespace. High afferent coupling shows that the
analyzed package/ namespace has high importance.

H. Efferent Coupling
Efferent means outgoing. - It is the number of types inside

a package/namespace that depend on types of other
types/packages. High efferent coupling shows the degree to
which the measured package/namespace depends on external
packages/namespaces.

The main idea of this metric is that the class has high

cohesion, when all its methods use all the fields of this class.

I. Duplicate Code
Code that is similar or copy and pasted can be harmful

because it can increase maintenance costs and inconsistent
changes to duplicate code can lead to inconsistent behavior.
The presence of similar code also indicates the presence of a
missed opportunity for reuse. [16]

J. Dead Code
Dead code is code that is never used. This includes unused

methods and variables. Dead code can lead to difficulties in
understanding the program which can lead to bugs or an
increase in maintenance costs. [17]

K. Defect Density or Software Issue Density
Defect Density is the number of confirmed defects

detected in software/component during a defined period of
development/operation divided by the size of the
software/component. [18]

Elaboration:

The ‘defects’ are:
• Confirmed and agreed upon (not just reported)
• Dropped defects are not counted

The period might be for one of the following:

• Duration (the first month, the quarter, or the year).
• For each phase of the software life cycle
• For the whole of the software life cycle

The size is measured in one of the following:

• Function Points (FP)
• Source Lines of Code

L. Weighted Methods per Class (WMC)
This metric is designed to provide a better measurement of

class complexity. It is the sum of the complexities of all the
class methods. A class having a high WMC is more complex
and is harder to maintain, reuse or extend. Complexity is not
explicitly defined for the metric to be generic. In the special

case when complexity is not considered, the WMC metric is
the same as the number of methods in the class.

M. Number of Children per class (NOC)
In Object Oriented (OO) terminology, classes that inherit

their functionality from other classes are called Children
Classes. A high value for NOC indicates that the class is
implemented in abstract manner since other classes can inherit
from it and reuse it.

VI. STATIC-CODE ANALYSIS TOOLS
Both industry and open-source developers have provided a

wide array of useful static-code analysis tools.

A. Atomiq[19]
Summary: Atomiq is a free tool that finds duplicate and
similar code.

Languages: C/C++, C#, Visual Basic.NET™, ASPX,
Ruby™, Python™, Java™, ActionScript, XAML

Metrics Supported: Duplicate Code

B. Checkstyle[20]
Summary: Checkstyle is an open-source tool to help
programmers write Java code that adheres to a coding
standard. There is a plug-in for Eclipse™, IntelliJ IDEA™,
Netbeans™, Jenkins™, and others that notifies developers
on-the-fly of any violations.

Languages: Java™

Metrics Supported: Cyclomatic Complexity, Design For
Extension, Presence of Javadoc Comments (packages,
types, methods, variables), Magic Numbers, File Length,
Method Length, Method Count

C. CLOC[21]
Summary: CLOC counts blank lines, comment lines, and
physical lines of source code in many programming
languages. Given two versions of a code base, CLOC can
compute differences in blank, comment, and source lines.
It is written entirely in Perl™ with no dependencies outside
the standard distribution of Perl™ v5.6 and higher (code
from some external modules is embedded within CLOC)
and so is quite portable.

Languages:

Metrics Supported: Lines of Code, Lines of Comments,
Lines of blank lines

D. CppDepend[22]
Summary: CppDepend simplifies managing a complex
C/C++ code base. You can analyze code structure, specify
design rules, do effective code reviews and master
evolution by comparing different versions of the code.
CppDepend counts the number of lines of code. It also

comes with more than 80 other code metrics. Some of
them are related to your code organization (the number of
classes or namespaces, the number of methods declared in
a class...), some of them are related to code quality
(complexity, percentage of comments, number of
parameters, cohesion of classes, stability of Projects...),
some of them are related to the structure of code (which
types are the most used, depth of inheritance...)

Languages: C++

Metrics Supported: Similar to NDepend

E. FINDBUGS[23]
Summary: Open-source tool written by the University of
Maryland used to find bugs in Java™ programs. A GUI is
provided in addition to access via Ant.

Languages: Java™

Metrics Supported: Identifies code that follow common
bug patterns for Java such as possible null pointer
dereference or index out of bounds.

F. Find Security Bugs[24]
Summary: Open-source plugin for FindBugs providing
security audits for Java™ web applications.

Languages: Java™

Metrics Supported: It can detect 63 different vulnerability
types with over 200 unique signatures with extensive
references given for each bug patterns with references to
OWASP Top 10 and CWE.

G. FORTIFY™ [25]
Summary: Fortify™ by Hewlett Packard provides a
comprehensive tool for detecting security vulnerabilities.

Languages: 21 languages

Metrics Supported: 500 types of vulnerability detection
including OWASP Top 10

H. GMetrics[26]
Summary: The GMetrics project provides calculation and
reporting of size and complexity metrics for Groovy
source code. GMetrics scans Groovy source code,
applying a set of metrics, and generates an HTML or XML
report of the results.

Languages: Groovy

Metrics Supported: Cyclomatic Complexity, Afferent
Coupling, Efferent Coupling, Lines per method, Lines per

class, Number of classes per package, Number of field per
class

I. JArchitect[27]
Summary: JArchitect offers a wide range of features. It is
often described as a Swiss Army Knife for Java
developers. JArchitect comes with more than 80 other
code metrics. Some of them are related to your code
organization (the number of classes or Packages, the
number of methods declared in a class...), some of them
are related to code quality (complexity, percentage of
comments, number of parameters, cohesion of classes,
stability of Projects...), some of them are related to the
structure of code (which types are the most used, depth of
inheritance...).

Languages: Java™

Metrics Supported: Similar to NDepend

J. McCabe IQ[27]
Summary: McCabe IQ provides software analysis tools to
measure the complexity and quality of code at the
application and enterprise level.

Languages: Ada, ASM86, C/C++, C#, C++.NET, COBOL,
FORTRAN, Java™, JSP, Perl™, PL1, Visual Basic™,

Metrics Supported: Cyclomatic Complexity(<10), Module
Design Complexity(<7), Essential Complexity (<4), Lack
of Cohesion Methods (>75), Object Integration
Complexity, Maintenance Severity

K. NDepend[28]
Summary: NDepend offers a wide range of features to let
the user analyze a code base. It is often described as a
Swiss Army Knife for .NET developers.

Languages: .NET™

Metrics Supported: Lines of code, Lines of comments,
Afferent coupling, Efferent coupling, Abstractness,
Instability, Lack of cohesion of methods, Cyclomatic
Complexity (<10)

L. PMD™ [29]
Summary: PMD™ is an open-source tool used to find
defects, including possible bugs,
dead code, suboptimal code, overcomplicated expressions,
and duplicate code.

Languages: PMD™ supports rulesets for Java™,
Javascript™, JSP, PL/SQL, Velocity Template Language,
and XML/XSL. The PMD™ Copy Paste Detector can run
with additional languages including C++, C#, Fortran, Go,
Matlab™, etc.

Metrics Supported: Varies by language. For most
languages, copy paste detection is provided. For Java™,
additional metrics include: Source lines of code,
Cyclomatic Complexity (<10), Coupling Between Objects,
Loose Coupling, Exception Handling, Unused Code (Dead
Code)

M. SonarQube™ [30]
Summary: SonarQube™ is an open-source platform for
managing code quality. The tool supports 20+ languages
through plug-ins and can collect a variety of metrics in
addition to allowing the creation of custom metric rules. It
also supports a variety of plug-ins for other code analysis
tools such as Checkstyle and PMD™ that can extend the
number of metrics it can collect.

Languages: Java™, C#, C/C++, PL/SQL, Cobol, ABAP™,
…(20+ languages supported through plug-ins)

Metrics Supported: Duplicate Code, Failed unit tests,
Insufficient branch coverage by unit tests, Insufficient
comment density, Insufficient line coverage by unit tests,
skipped unit tests

N. UCC[31]
Summary: UCC is a comprehensive source lines of code
counter produced by the
USC Center for Systems and Software Engineering. It is
an open-source tool that can be compiled with any ANSI™
standard C++ compiler.

Languages: C/C++, C#, Java™, Visual Basic™, Assembly,
and others

Metrics Supported: SLOC, PSLOC, LSLOC

O. UNDERSTAND[32]
Summary: Understand is a robust static code analysis tool
developed by Scientific Toolworks, Inc. supporting the
generation of multiple kinds of reports and views of the
data at different levels (project, class, object oriented
metrics, program unit, file). Understand can perform
dependency analysis in addition to code standards testing.

Languages: Ada, COBOL, Coldfire 68K Assembly,
C/C++, C#, Fortran, Java™, Jovial, Pascal™, PL/M,
Python™, VHDL, Javascript™, PHP™, XML, HTML, CSS

Metrics Supported: Understand can check for adherence to
published coding standards from Effective C++ (3rd
Edition) by Scott Meyers, MISRA-C 2004, MISRA-C++
2008, and any custom coding standards defined by the
user. Understand also supports checks for Dead Code,
Cyclomatic Complexity, SLOC, Coupling Between
Objects, Lack of Cohesion in Methods, comment to code
ratio.

P. Tools to Metrics Matrix

TABLE VIII. TOOLS TO METRICS MATRIX

CONCLUSION
We have identified software qualities, software

analysis tools, and related metrics. This effort was based on
existing data and analysis of that data, proofing a formula for
use by Department of the Navy software development efforts
to measure inherent Quality of the software being developed.
However, each project is unique and will require a software
quality model tailored for its individual needs.

This process is an ongoing effort for any organization

and requires analysis of data and trends to determine the most
effective implementation of metrics to achieve the highest
fidelity of quality and provide for beneficial cost savings. In
addition, evaluators need to create and calibrate cost functions
for the cost of fixing the code that does not meet software
code requirements. This allows for the normalization of the
software model based on cost.

REFERENCES
[1] [1] J. S. Poulin, “Measuring Software Reusability”; Third

International Conference on Advances in Software Reusability, 1994.
[2] S. Chidamber, C.Kemerer, “A Metrics Suite for Object Oriented

Design”, IEEE Transactions of Software Engineering, Vol.20, NO.6,
June 1994.

[3] J. Lenhard, G. Wirtz, “Measuring the Portability of Executable Service-
Oriented Processes”; Distributed Systems Group, University of
Bamberg, Bamberg, Germany.

[4] J. D. Mooney, “Issues in the Specification and Measurement of
Software Portability”; Dept. of Statistics and Computer Science, West
Virginia, PO BOX 6330, Morgantown, WV. 26506-6330

[5] L. Rosenberg PhD, T. Hammer, J. Shaw, “Software Metrics and
Reliability”, GSFC, UNISYS/NASA.

[6] Kernighan, B, and Pike, P, ‘The Practice of Programming’, Addison
Wesley, isbn: 0-201-61586-X, 1999.

[7] D. Stabrinoudis, M. Xenos, D. Christodoulakis, “Relation Between
Software Metrics and Maintainability”; Technical Report No.
TR99/08/03, Computer Technology Institute, 1999

[8] F. Weil, PhD., “Modernized and Maintainable Code”, UniqueSoft, LLC.
2015

[9] M. Lacchia, “ Introduction to Code Metrics”,
http://radon.readthedocs.org/en/latest/intro.html

[10] d. S. E. d. B. M. K. Nakagawa E.Y, "Software Architecture Relevance in
Open Source Software Evolution: A Case Study," in Annual IEEE
International Computer Software and Application Conference, 2008.

[11] R. W. J. E. I. K. M. Andi Wahju Rahardjo Emanuel, "STATISTICAL
ANALYSIS ON SOFTWARE METRICS AFFECTING
MODULARITY IN OPEN SOURCE SOFTWARE," International
Journal of Computer Science & Information Technology (IJCSIT), vol.
3, pp. 105-118, 2011.

[12] T. J. McCabe, "A Complexity Measure," IEEE Transactions on
Software Engineering, Vols. SE-2, no. 4, 1976.

[13] A. H. Watson and T. J. McCabe, "NIST Special Publication 500-235
Structured Testing: A Testing Methodology Using the Cyclomatic
Complexity Metric," McCabe Software, 1996.

[14] Y. Suresh, J. Pati and S. K. Rath, "Effectiveness of Software Metrics for
Object-oriented System," Procedia Technology, vol. 6, pp. 420-427,
2012.

[15] R. Martin, "Object Mentor," 28 October 1994. [Online]. Available:
http://www.objectmentor.com/resources/articles/oodmetrc.pdf.
[Accessed 15 August 2015].

[16] E. Juergens, F. Deissenboeck and B. Hummel, "Code Similarities
Beyond Copy & Paste," Proceedings of the 14th European Conference
on Software Maintenance and Reengineering, 2010.

[17] "Detect Dead Code and Calls to Deprecated Methods with Sonar Squid,"
SonarQube, [Online]. Available: http://www.sonarqube.org/detect-dead-
code-and-calls-to-deprecated-methods-with-sonar-squid/. [Accessed 14
August 2015].

[18] softwaretestingfundamentals, "softwaretestingfundamentals.com,"
[Online]. Available: http://softwaretestingfundamentals.com/defect-
density/.

[19] "Atomiq Code Similarity Finder," [Online].
 Available: http://www.getatomiq.com/. [Accessed 31 July 2015].
[20] "CheckstyleChecks," [Online]. Available:

http://checkstyle.sourceforge.net/checks.html. [Accessed 31 July 2015].
[21] Codergears, "CppDepend," Codergears, [Online]. Available:

http://cppdepend.com. [Accessed 14 August 2015].
[22] "FindBugs Bug Descriptions," [Online]. Available:

http://findbugs.sourceforge.net/bugDescriptions.html. [Accessed 31 July
2015].

[23] P. Arteau, Open-source, open for contributions, [Online]. Available:
http://h3xstream.github.io/find-sec-bugs.

[24] H. Packard, "Securing your enterprise software," [Online]. Available:
http://www8.hp.com/us/en/software-solutions/asset/software-asset-
viewer.html?asset=1356157&module=1823975&docname=4AA4-
2455ENW&page=1823980. [Accessed 29 August 2015].

[25] "Gmetrics," Apache License V2.0, [Online]. Available:
http://gmetrics.sourceforge.net/index.html.

[26] Codergears, "jarchitect," Codergears, [Online]. Available:
http://www.jarchitect.com.

[27] "McCabe Software Metrics Glossary," McCabe Software, [Online].
Available: http://www.mccabe.com/iq_research_metrics.htm. [Accessed
31 July 2015].

[28] Codergears, "ndepend," Codergears, [Online]. Available:
http://www.ndepend.com.

[29] "PMD Rulesets index: Current Rulesets," [Online]. Available:
https://pmd.github.io/pmd-5.3.3/pmd-java/rules/index.html. [Accessed
31 July 2015].

[30] "SonarQube Manual Issues," SonarSource S.A., [Online]. Available:
http://docs.sonarqube.org/display/SONAR/Manual+Issues. [Accessed 3
August 2015].

[31] "UCC About," USC Center for Systems and Software Engineering,
[Online]. Available: http://csse.usc.edu/ucc_wp/about/. [Accessed 31
July 2015].

[32] "Understand Features," Scientific Toolworks, Inc., [Online]. Available:
https://scitools.com/features. [Accessed 3 August 2015].

